## Physics and Math of Music — Day 1 — Vibrations

Peter Folk (pfolk@uni) and Paul Grayson (pgrayson@uni)

Tuesday, February 5, 2002

## Things vibrate with sine waves

Many things, when bumped, plucked, or shaken, start vibrating back and forth. For example, here is a weight hanging from a string:



Figure 1: A very simple pendulum.

If we give it a push, it will swing back and forth for a long time. Using a paintbrush and a long piece of paper, we can trace the motion of the weight. It follows a sine wave:



Figure 2: Plot of a simple sine wave:  $x = A \sin(2\pi f t)$ .

## Things have natural frequencies

The pendulum swings back and forth at the same rate no matter how hard you hit it<sup>1</sup>. For example, if it swings back and forth 10 times per second, then f = 4/s, and f will be 4/s even when you swing it faster

<sup>&</sup>lt;sup>1</sup>as long as you don't hit it *too* hard!

or slower. That's why pendulums are used for making clocks — they keep very good time. To calculate the natural frequency of a pendulum, all we need to know is L, its length:

$$f = \frac{1}{2\pi} \sqrt{\frac{9.8}{L/1\mathrm{m}}} / \mathrm{s}.$$

So, for example, if L = 1m, we get

$$f = \frac{1}{2\pi} \sqrt{\frac{9.8}{1\text{m}/1\text{m}}} / \text{s} = \frac{1}{2\pi} \sqrt{\frac{9.8}{1}} = \frac{1}{2\pi} \sqrt{9.8} = 0.5 / \text{s}$$

That means a one-meter pendulum takes 2 seconds to complete a full swing. Here's an important note: if you want to test our pendulum on another planet, you'll have to change the 9.8 — that number represents the strength of gravity.

## Things resonate

If we give the pendulum lots of little kicks at its natural frequency, it will start moving faster and faster. This is called *resonance*, and it occurs everywhere. You know a lot about resonance if you have ever used a swing: you have to pump your legs at just the right frequency. If you are a little bit off, the swing doesn't move very much!