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Pressure in the bacteriophage lifecycle
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The textbook model of a bacteriophage
shows that pressure is built up within
the capsid by a strong molecule motor
during packaging, and that the pressure
1s used to forcibly inject the DNA into
the cell. Our goal 1s to analyze this
inherently mechanical method of gene
transfer, to quantitatively understand the
origin of the internal pressure and its
relation to the kinetics of the ejection
process.
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Modeling the pressure

Individual sources of pressure:
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Combining both effects:
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* Bending appears negligible, but it
1s important below 50% packaging
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* This method alone does not tell us anything at all about kinetics!

Predictions of the theory
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Single-molecule ejection measurements

* Based on Mangenot et al. (2006)

* An improvement on the bulk measurements by
Novick & Baldeschwieler (1988)

* Capable of resolving the velocity of DNA

during translocation. receptor

protein
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* Reproducible within exp. error
* Smooth motion
* Strong effect of 1ons in buffer

Quantification of ejection kinetics

* Shorter phage slightly faster
* Long time at max. extension
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* Velocity only depends on genome length

* Na* produces max. translocation velocity 4-5 times higher than Mg**
* Mobility = v/F 1s independent of salt over most of the ejection

* Mobility decreases with the DNA density: hydrodynamic drag?
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A plot of the ejection times
reveals the force dependence of
the triggering event. We expect
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ejection. Increasing the force
by changing 1onic conditions or
genome length reduces A. 10 |
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Current work: observing ejection in vivo

Pressure can only be responsible for 50-80% of the ejection:
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SYBR Gold

Two-color observations of capsid & DNA: stained DNA

* DNA stained with SYBR Gold (green)
* Capsid protein conjugated to Cy5 (red)
* Observation possible for >1h at 1 Hz
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If left for ~1h before observation,
some cells are found with DNA
inside; this has not yet been seen 1n
real time. Leakage through external
solution?

Conclusions and questions

* Jon and genome length dependences consistent with theory.
* What determines the dynamics?

* What other forces are at play in vivo?

* Relationship to DNA/RNA transfer in Eukaryotic viruses?
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